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1. Introduction. Strictly speaking, the Navier-Stokes equations of 
aerodynamics are le~timately applicable to flows in which the character- 
istic length L is much larger than the length of the free path of the 
molecules A. 

For larger values of X (i.e. for less dense gases) or smaller values 
of L (i.e. for flows with large gradients), the motion of the gas cannot, 
generally speaking, be treated as the motion of a continuous mediun - 
account must be taken of its molecular structure. The motion of a mon- 
atomic gas (in which triple collisions of molecules are extremely rare, 
and the mutual interaction of the molecules arises only during collisions 
between molecules, occupyina intervals of time which are short by com- 
parison with the intervening time between collisions) is assuned in the 
kinetic theory of gases to be characterized by a distribution function 

'lhe distribution function is nonnalized in such a way that the express- 

ion f(xi, ei)dei d52dt3= f& P re resents the number of molecules per 
unit volune at the point xi, moving with velocities between pi and fi 
+ dfi. Ihe hydrodynamic quantities are expressed in terms of the dis- 
tribution function as follows: 

p (xi, t) = mn = m 
11s 

j (xi, t, &) diI diz dt3 = m jdq 
s 

(density) (1.1) 

ui (Xi, t) = $ \ jiidq (mean velocity of 
molecules) 

the 
(1.2) 

$ kT (xi, t) = -;a 1 jc”dq (temperature) (1.3) 

p = knT (pressure) (1.4). 

Here k is the Boltsmann constant, II is the mass of the molecule, n is 
the number of molecules per unit volume and c2 = cl2 + c22 + c.,~, where 
ci= &- ui is the velocity of the molecule with respect to coordinates 
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moving with the mean velocity of the molecules ui. Expressions of the 

type 

are called moments. Moments with a simple physical significance are: 

Pij = ??l jcicjdq = pij + PBij 
s 

(stress tensor) 

h 
%j (Kronecker delta) 

qi = $ 
I 

jc%idq (vector current of ) 
energy) 

(1.5) 

(1.6) 

In the absence of body forces, the distribution function satisfies 
Boltzmann’s equation: 

df ai J_ ’ at _ ze - 
-& = -aj- 0 5 dti SSlS (j”j’ - f’j) gb db dq’ = (1) (1.7) 

‘lhe right-hand side of Boltzmann’s equation gives a measure of the 
number of molecules with velocities in the interval [ti, ti + d tiI as a 
result of collisions with molecules having velocities in the interval 
[E,‘, &* + d&*1. 

In (1.7) g = Iq - q*l is the modulus of the relative velocity of the 
colliding molecules, b is the approach distance. ‘l’he integration is 
taken over all possible velocities q* of the incident molecules and with 
approach distances from b = 0 up to a certain bmax, such that when b > 
b max it can be assumed that the interaction potential of the molecules 
q4 is equal to zero . ‘Ihe primes after ,f and f’ in the right hand side of 
(1.7!*show that these functions are evaluated for velocities [{ and 6:’ 
respectively, of the molecules after the collision. These velocities are 
determined from the velocities of the molecules before the collision, 
their approach distance and the interaction law of the molecules. ‘lhe 
structure of the right-hand side of the equation even for the simplest 
laws of interaction of molecules turns out to be extremely complex, which 
represents one of the fundamental difficulties of the application of 
equation (1.7). 

If equation (1.7) be multiplied by m, mci or l/2 mc2 ** and integrated 
with respect to q, then the integral on the right-hand side is identic-. 
ally zero [ 1, 2 1, and from the left-hand side we obtain, respectively, 

*It is assumed that the potential possesses spherical symmetry. 

**I.e. by the so-called summatory invariants. 
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a? - + 
ar + (Pffi) = 0 

(equation of 

conservation of mass) 
(1.8) 

hi ihi 1 arij 
()1 +Uj~+--= p Cirj 

0 (equation of motion) (1.9) 
J 

= 0 (equation of heat flow) (1.10) 

ntinuiw this process further (i.e. multiplying equation (1.7) by 
a 8 c i jc{ and integrating;), we obtain equations for Pii, 9i and higher 

moments * . ‘lhe ri&t-hand sides of the equations, however, do not now 

vanish identically, and are expressed in the general case in terms of 

the moments of all orders. The conjoint infinite system of equations, 
when obtained, is equivalent to Boltzmann’s equation (1.7). 

This system, however, is so complex that until now only very dep;ene- 

rate exact solutions have been obtained by this method. 

Ihe equations (1.8) - (1.10) determine all the hydrodynamic’quantities 

p, ui and p. In order that this system should be self-contained, it is 

necessary that the stress tensor Pij and the vector flow of heat 9i be 

expressed in texms of the hydrodynamic quantities and their derivatives. 

It is easy to show, however, that this is not possible for every value of 

the Knudsen number K = X/L. 

In fact, suppose that there are two planes with temperatures Tl and T2 
(for definiteness Tl > T2), separated by distance L from one another. If 

the length of the free path X >> L, then the temperature between the 

planes T(T, < T < T,) is uniform. Nevertheless, heat will be transferred 
from plane 1 to plane 2, i.e. in this case ci at a certain internal point 

cannot be expressed in terms of the hydrodynamic quantities at this point 

and of their derivatives of any order. & the other hand, when X << L, 
the Navier-Stokes equations, which are obtained from (1.8) - (l.lO), are 

applicable, and it is well known that Pij and qi are expressible in 

terms of the derivatives of the hydrodynamic quantities. Accordingly, it 

may be thou&t that if in general it is possible to represent P. . and 9i 

in the form of functions of the hydrodynamic quantities and the:: deri- 
vatives, then this can be done only for a certain range of slightly 
rarefied gases. 

For small Knudsen numbers Enskoe; Ill sought the distribution function 
in the form of a series: 

j = f0 + Kj, + h?j, -+ . . . (1.11) 

l Different forms of the corresponding infinite systems of equations 
have been obtained by Grad [ 2 1 and Truesdell [ 3 I. 
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The right-hand side of equation (1.7) has order K-l. Accordingly, 

substituting the series for f in (1.7) and equating tenas of the smne 

order in K, we obtain a recurrent system of integral equations for the 

determination of f,, fl. ‘lb e solution of the equation for f. is Maxwell’s 
equilibrium function 

If we limit ourselves to this approximation, then Pii = flii and 

Qi = 0 and the equations (1.8) - (1.10) become Euler’s equations. 

Substituting the f. found in this way in the integral equation for f, 
and solving it, we find _fl. Restricting consideration to two texms of 

the series, we obtain the Navier-Stokes equations. In succeeding approxi- 

mations we obtain Wlrnett’s equation [ 1, 4 1 , and so on. ‘Ihe solution of 

the resulting integral equations, however, is extremely complicated and 

already in brnett’s approximation we are reduced to seeking a solution 

for the distribution function in a particular form. 

Grad 12 I found these same approximations by a somewhat different 
method for Maxwellian molecules, applying the method of iteration to a 
simplified system of equations for the moments, In order to achieve 
simplification he bad to restrict himself to a study of the equations, 
corresponding to a distribution function of a particular form, which 

compels one to doubt whether all the terms in the equations were included. 

In the present paper Boltsmann’s equation is simplified in such a way 
that it is not only easy to find from it the distribution function to an 
arbitrary degree of approximation, but also it is easy to find the re- 

mainder of the series, which makes it possible in any practical case to 
estimate the error of the accepted approximation for the flow of a 
slightly rarefied gas. 

The approximate form of Boltsmann’s equation obtained in this Paper 

makes possible in this case an important simplification of the calcula- 

tions. 

2. Simplification of Ebltzmano's equation. The right-hand side 
of equation (1.7) can be written in the form of the difference: 

D q---@~ = (2.1) 

in which Q2 is defined as the number of molecules having velocities in 

the interval [ei, ci + dtil and leaving it as a result of collisions, 

whilst $p, is the number of molecules acquiring this velocity as a result 

of collisions. 
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kt us consider any one of the molecules, possessing the velocity hi. 
‘Ihe nu&er of such molecules at a given moment of time t per unit volune 
at the point xi is equal to f(zi, t,ti) = f. I.& us consider the colli- 
sions of this molecule with molecules, possessing velocities 5,’ [ the 
number of such molecules per init volume is equal to f(xi, t,fi*)] . Let 
us assune Maxwell’s law for the interaction of molecules, i.e. that the 
force of molecular interaction F = ar -=, where r is the distance between 

the molecules and a is a constant. In other words, the molecule 2 with 
velocity ti interacts with molecules 1 with velocities fi’ for any . 
approach distance b. However, the greater the approach distance, the less 
the interacting molecules change each other’s motion. Accordingly, from 
each group of interacting molecules it is expedient to select only those 
which undergo a large change in their momentum and energy in the colli- 
sion. Lt us consider the collision of the molecules (Fig. 1) in coordi- 
nates moving with the velocity ti of the molecule 2 before the collision. 
kt us direct the axis of y along the direction of relative motion g. 
‘Ihe components of velocity of the molecule 1 after the collision are given 

where a is the deflection of molecule 1. Let b.be Such that the deflec- 
tion a is small. Then the change of momentum is of order w. 01 the 

other hand, the impulse received by molecule 1 with the Maxwellian inter- 
action law is (Fig.11 

Fig. 1. 

Accordingly the ratio of the change in momentum to the characteristic 
change of momentum mg is 

tltgrr CoWt 
--w rttg 



602 M.N. Kogan 

If we require that, when b is equal to 6’ - the effective radius of 

a collision - this ratio should equal a certain small quantity which is 
the same for all collisions (i.e. all g), then the effective radiusiT{ 

the collision b” must be related to g by the formula b” = const. g . 
lhen the effective collision cross-section o” is equal to 

a0 = A/g (2.2) 

where A is a constant depending on the sort of molecule. ‘Ihis same rela- 

tionship is obtained also from consideration of the change of enerw. 

Accordingly, of all collisions of the molecule 2 under consideration 

with molecules 1, we shall consider only those which are included within 

a cylinder of height g, and having a base area of a0 = A/g. ‘Ihe number 

of such molecules is obviously equal to Af*. Then the total number of 

collisions of the molecule considered, with molecules having velocities 

6 i, is 

cPz = Af f’dq = Anj 
s 

(2.3) 

Accordingly, a part of the collision integral $ is expressed in a 

simple form. In order to simplify the very complex part @I of the colli- 

sion integral, we assume that the colliding molecules acquire as a result 
of the collision the most probable distribution for a given number of 

molecules, and given momentum and energy. According to (2.31, the number 
of colliding molecules is 

s 
Anjdq = An2 (2.4) 

Their manentmn and mean kinetic energy (temperature) are, respectively, 
.l 

m Anfiidq = Amurn2, 
I 

; \ Anjc2dq = f kTn2A (2.5) 

Ihen it is easily seen that the most probable distribution is the 

Maxwell Distribution 

Qp,= An2 (&yexp(-$) = Anj,, (2.6) 

where fO is Maxwell’s distribution function, corresponding to the given 
function f. Accordingly, the distribution function of the colliding 
molecules in our case is proportional to the Maxwell distribution 

corresponding to the parameters of the whole stream. 

Ihe assmnption concerning the most probable distribution of the mole- 
cules after collision is justified by the following arguments. It is well 
known (see [ 2 1 , and also Section 3 of the present paper) that, whatever 

the distribution of the molecules, it tends to the equilibrium (most 

probable) distribution according to an exponential law. Moreover, the 
relaxation time is of the order of the time between collisions, i.e. when 

the molecules collide once, the distribution of the molecules approximates 
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appreciably to equilibrium. 

Fig. a. 

In Fig, 2, 3 and 4 are shown examples of the tendency to the equi- 

libriun distribution for three desnerate simple cases, very far from 

equilibrium before collision; all the cases were calculated for rigid 

spheres. In each of the cases, two groups of spheres collide, one of the 

groups being at rest before the collisions. Ihe other group is moving 

with constdnt velocity in the csse depicted in Fig. 2. In this FiE. is 

shown the distribution of molecules with respect to velocity in the 

direction of the initial motion of the molecules of the second group. In 
Fig. 3 is depicted the result of the collision of the molecules for the 

case when the second group consists of two equal parts, moving towards 

one another with the distribution B( UI e -kI ‘1 where B and k are constants. 

In the third case (Fig.41, the second group of molecules moves with 

spherical synraetry towards the centre, with distribution of the molecules 
2 -kc according to their velocities Bc e . 

Fig. 3. Fig. 4. 

All these examples show that, after one collision, the distribution 

of velocities has come very close to equilibrium. Finally, it is possible 
to contrive special examples when this is not so. Such cases, however, 
must occur extremely rarely. 
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Accordingly, Boltsmann’s equation (1.7) can be rewritten in the 
following simple approximate form: 

(2.7) 

The right-hand side of Boltzmann’s equation, in a form analogous to 
(2.7). has been used by many authors on the basis that, for a state close 
to equilibrium, the trend of the velocities towards equilibrium is pro- 
portional to the deviation from the equilibrium state. In the paper [5 1 
an analogous equation was applied without justification to all Knudsen 
numbers. The analysis presented above shows under what assumptions Boltz- 
mann’s equation can be represented in the form (2.7). In particular. it 
follows from the analysis that equation (2.7) is unsuitable for Coulomb 
interactions, to which it is applied in the paper [ 5 1. 

3. Ihe equations of motion of slightly rarefied gases. 
Assuming that the hydrodynamic quantities p, Ui and T appearing in f. 
are given, we can write the solution of equation (Z-.7) in the form 

(3.1) 

-I!- (A \ nj,,M (t) dt + 1 (~~0, O,ki)J 9 

I 

j(2io f <it, tpEi)= 
W) 1 

M (t) = exp Andt 
s 

0 0 

Integrating successively by parts, we obtain 

N 

j = 2 Ul, (X,0 + iit, 1, Zi) + (3.2) 
k-o 

(-1) doA-, 
=k =x dl ’ 

If the series converge for all points of the region as N + 00, then 
(3.2) transforms to Enskog’s series (1.11). It is interesting to notice 

that in this case the distribution function (and consequently all moments 
as well) at a certain point of the flow is completely determined by the 

hydrodynamic quantities and their derivatives, and does not depend 

directly upon the boundary conditions. 

If, however, there is a point (xi, 0, ci) in the region, at which 
Enskog’s series does not convers (for exanple, inside a sharp density 
discontinuity), then the boundary conditions are not completely elimi- 

nated. However, at distances of several free paths of the molecules from 
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this re+n (for exwple, from the discontinuity) the factor KITi in 
(3.2) becomes so small that at this point it is possible to use a finite 
portion of the series, containing only the parameters relating to the 
Riven point. 

'Ihe formula (3.2) makes it possible not merely to write out all the 
terms of Fnskog's series, but also gives an expression for the remainder 
of the series, which in any practical case enables one to estimate the 
error of the accepted approximation. From the form of the remainder ten 
it is obvious that the series converges asymptotically for large An 
(i.e. for slightly rarefied Eases). 

Substitutiv the distribution function (3.2) in (1.5) and (1.61, let 
us find I'.. and q. 
their derjiativesf 

lhus, retaining: 
obtain 

expressed in terms of the hydrodynamic quantities and 

only two terms (the Navier-Stokes approximation), we 

Pij = p6ij -!_TE!2+q+;!x~~ij (3.3) 

5 k”T aT 
Qi = -TX&. 

t 

Accordingly, for co-efficients of viscosity cc and heat conduction A 
we obtain 

&.J, ).=CC = g_!& 
(3.4) 

'lhe exact Boltsmann equation also leads to a linear dependence of X 
and p upon the temperature for Maxwellian molecules. ‘lhe coefficient 
linking X and p in the exact theory, however, is 15/4 and not S/2. 

Let us consider a certain state of the molecules, when ui = 0, n = 

const. and T= const. in the whole of space, whilst P ij, qi and the other 
moments are not equal to zero, 

Then the distribution function satisfies the condition 

df (0 
- = An Vo - I) dt (3.5) 

where n and fO are constants with respect to time and space. The solution 
of this equation, clearly, is the expression 

f(t) = /o(t) + e-""'VP) --f,(o)1 (3.6) 

Then for the manents we have 

pij (t) = eAAnfJJij (0), qi (t) = e---Ant qi (0) and SO on, 
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or, eliminating A by means of (3.41, we obtain 

pij (t) = e-‘lt pij (O), qi (t) = e-l/+ qi (0) and so on, 

where r = p/p is the relaxation time. 

lhe exact solution for this case is, however, [2 1 

pij (t) = e-'lT pij (0), qi (t) = e-‘/s flzqi (0) and so on, 

(3.7) 

Here again, the exact and the approximate solutions differ in the 
constants. 

Finally, let us introduce for comparison the infinite system of equa- 

tions for the moments, equivalent to Boltzmann's equation, in the case 

of Maxwellian molecules [2 1 and the parallel system (on the right), ob- 
tained from (2.71, i.e. 

aPij 
at -/- * - * = - Anpij, !y+ . . . = - Anpit 

_$+ . . . = --~-AAnqi, $L+ . . . = - Anqi 
. . . . . . . . . . .* . . . . . . . . . . . . . 

the exact and the approximate systems differ only in the coefficients. 

It would be possible to derive $Irnett's equation and higher approxi- 

mations from the series (3.2). lhe complexity, however, even of Wlrnett's 

approximation leaves little hope of the possibility of making use of 

them. 

Equation (2.7) and formula (3.1) are suitably employed for assessing 

the remainder tens of bskog's series also in those cases when an 

explicit form for the distribution function itself is required for 

analysis. 

4. The motion of a highly rarefied gas. For large Knudsen 
numbers (A/L >> 1) the influence of collisions is small and in the first 

approximation can be neglected. lhen Boltzmann's equation has the solution 

f(O)(90 + tit f t9 Ei) =/(909 09 Ei) (4.1) 

Accordingly, for given initial and boundary conditions it is easy to 

find the distribution of the velocities of the molecules at any 

the region, and consequently, in the first a proximation n (01, JfPt Of 

l&(o) and foto). Substituting the f(')and fop') so obtained in the right 

hkd side of the approximate Boltnnann equation, we obtain equations for 

the determination of f(')and so on. 

In so far as the colliiions play a comparatively minor role for high 

degrees of rarefaction, then it is possible to hope that the assumptions 
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made in the simplification of Boltzmann’s equation are completely arfniss- 
ible for calculations of flows approximating to free-molecule flow. 

Generally in those cases when the approximate Boltsmann equation can- 
not warantee the necessary accuracy, it should be regarded as a mathe- 
matical model of the exact EIoitzmann equation on which, thanks to the 
comparative simplicity of the approximate equation, one can study the 
behavior of the distribution function. 
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